1 /** 2 3D Transformation. 3x4 matrix. 3 4 Copyright: 5 Copyright (c) 2007 Juan Linietsky, Ariel Manzur. 6 Copyright (c) 2014 Godot Engine contributors (cf. AUTHORS.md) 7 Copyright (c) 2017 Godot-D contributors 8 Copyright (c) 2022 Godot-DLang contributors 9 10 License: $(LINK2 https://opensource.org/licenses/MIT, MIT License) 11 12 13 */ 14 module godot.transform; 15 16 import godot.api.types; 17 import godot.vector3; 18 import godot.quat; 19 import godot.basis; 20 import godot.aabb; 21 import godot.plane; 22 23 /** 24 Represents one or many transformations in 3D space such as translation, rotation, or scaling. It is similar to a 3x4 matrix. 25 */ 26 struct Transform3D { 27 @nogc nothrow: 28 29 Basis basis; /// 30 Vector3 origin; /// 31 32 this(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, 33 real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) { 34 set(xx, xy, xz, yx, yy, yz, zx, zy, zz, tx, ty, tz); 35 } 36 37 this(in Basis basis, in Vector3 origin) { 38 this.basis = basis; 39 this.origin = origin; 40 } 41 42 Transform3D inverseXform(in Transform3D t) const { 43 Vector3 v = t.origin - origin; 44 return Transform3D(basis.transposeXform(t.basis), 45 basis.xform(v)); 46 } 47 48 void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) { 49 basis.elements[0][0] = xx; 50 basis.elements[0][1] = xy; 51 basis.elements[0][2] = xz; 52 basis.elements[1][0] = yx; 53 basis.elements[1][1] = yy; 54 basis.elements[1][2] = yz; 55 basis.elements[2][0] = zx; 56 basis.elements[2][1] = zy; 57 basis.elements[2][2] = zz; 58 origin.x = tx; 59 origin.y = ty; 60 origin.z = tz; 61 } 62 63 Vector3 xform(in Vector3 p_vector) const { 64 return Vector3( 65 basis[0].dot(p_vector) + origin.x, 66 basis[1].dot(p_vector) + origin.y, 67 basis[2].dot(p_vector) + origin.z 68 ); 69 } 70 71 Vector3 xformInv(in Vector3 p_vector) const { 72 Vector3 v = p_vector - origin; 73 74 return Vector3( 75 (basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + ( 76 basis.elements[2][0] * v.z), 77 (basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + ( 78 basis.elements[2][1] * v.z), 79 (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + ( 80 basis.elements[2][2] * v.z) 81 ); 82 } 83 84 Plane xform(in Plane p_plane) const { 85 Vector3 point = p_plane.normal * p_plane.d; 86 Vector3 point_dir = point + p_plane.normal; 87 point = xform(point); 88 point_dir = xform(point_dir); 89 90 Vector3 normal = point_dir - point; 91 normal.normalize(); 92 real_t d = normal.dot(point); 93 94 return Plane(normal, d); 95 96 } 97 98 Plane xformInv(in Plane p_plane) const { 99 Vector3 point = p_plane.normal * p_plane.d; 100 Vector3 point_dir = point + p_plane.normal; 101 point = xformInv(point); 102 point_dir = xformInv(point_dir); 103 104 Vector3 normal = point_dir - point; 105 normal.normalize(); 106 real_t d = normal.dot(point); 107 108 return Plane(normal, d); 109 110 } 111 112 AABB xform(in AABB p_aabb) const { 113 /* define vertices */ 114 Vector3 x = basis.getAxis(0) * p_aabb.size.x; 115 Vector3 y = basis.getAxis(1) * p_aabb.size.y; 116 Vector3 z = basis.getAxis(2) * p_aabb.size.z; 117 Vector3 pos = xform(p_aabb.position); 118 //could be even further optimized 119 AABB new_aabb; 120 new_aabb.position = pos; 121 new_aabb.expandTo(pos + x); 122 new_aabb.expandTo(pos + y); 123 new_aabb.expandTo(pos + z); 124 new_aabb.expandTo(pos + x + y); 125 new_aabb.expandTo(pos + x + z); 126 new_aabb.expandTo(pos + y + z); 127 new_aabb.expandTo(pos + x + y + z); 128 return new_aabb; 129 } 130 131 AABB xformInv(in AABB p_aabb) const { 132 /* define vertices */ 133 Vector3[8] vertices = [ 134 Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb 135 .size.z), 136 Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb 137 .position.z), 138 Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb 139 .size.z), 140 Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z), 141 Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb 142 .size.z), 143 Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z), 144 Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z), 145 Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z) 146 ]; 147 AABB ret; 148 ret.position = xformInv(vertices[0]); 149 for (int i = 1; i < 8; i++) { 150 ret.expandTo(xformInv(vertices[i])); 151 } 152 return ret; 153 154 } 155 156 void affineInvert() { 157 basis.invert(); 158 origin = basis.xform(-origin); 159 } 160 161 Transform3D affineInverse() const { 162 Transform3D ret = this; 163 ret.affineInvert(); 164 return ret; 165 166 } 167 168 void invert() { 169 basis.transpose(); 170 origin = basis.xform(-origin); 171 } 172 173 Transform3D inverse() const { 174 // FIXME: this function assumes the basis is a rotation matrix, with no scaling. 175 // affine_inverse can handle matrices with scaling, so GDScript should eventually use that. 176 Transform3D ret = this; 177 ret.invert(); 178 return ret; 179 } 180 181 void rotate(in Vector3 p_axis, real_t p_phi) { 182 this = rotated(p_axis, p_phi); 183 } 184 185 Transform3D rotated(in Vector3 p_axis, real_t p_phi) const { 186 return Transform3D(Basis(p_axis, p_phi), Vector3()) * (this); 187 } 188 189 void rotateBasis(in Vector3 p_axis, real_t p_phi) { 190 basis.rotate(p_axis, p_phi); 191 } 192 193 Transform3D lookingAt(in Vector3 p_target, in Vector3 p_up) const { 194 Transform3D t = this; 195 t.setLookAt(origin, p_target, p_up); 196 return t; 197 } 198 199 void setLookAt(in Vector3 p_eye, in Vector3 p_target, in Vector3 p_up) { 200 // Reference: MESA source code 201 Vector3 v_x, v_y, v_z; 202 /* Make rotation matrix */ 203 204 /* Z vector */ 205 v_z = p_eye - p_target; 206 207 v_z.normalize(); 208 209 v_y = p_up; 210 211 v_x = v_y.cross(v_z); 212 213 /* Recompute Y = Z cross X */ 214 v_y = v_z.cross(v_x); 215 216 v_x.normalize(); 217 v_y.normalize(); 218 219 basis.setAxis(0, v_x); 220 basis.setAxis(1, v_y); 221 basis.setAxis(2, v_z); 222 origin = p_eye; 223 } 224 225 Transform3D interpolateWith(in Transform3D p_transform, real_t p_c) const { 226 /* not sure if very "efficient" but good enough? */ 227 Vector3 src_scale = basis.getScale(); 228 Quaternion src_rot = basis.quat; 229 Vector3 src_loc = origin; 230 231 Vector3 dst_scale = p_transform.basis.getScale(); 232 Quaternion dst_rot = p_transform.basis.quat; 233 Vector3 dst_loc = p_transform.origin; 234 235 Transform3D dst; 236 dst.basis = Basis(src_rot.slerp(dst_rot, p_c)); 237 dst.basis.scale(src_scale.linearInterpolate(dst_scale, p_c)); 238 dst.origin = src_loc.linearInterpolate(dst_loc, p_c); 239 240 return dst; 241 } 242 243 void scale(in Vector3 p_scale) { 244 basis.scale(p_scale); 245 origin *= p_scale; 246 } 247 248 Transform3D scaled(in Vector3 p_scale) const { 249 Transform3D t = this; 250 t.scale(p_scale); 251 return t; 252 } 253 254 void scaleBasis(in Vector3 p_scale) { 255 basis.scale(p_scale); 256 } 257 258 void translate(real_t p_tx, real_t p_ty, real_t p_tz) { 259 translate(Vector3(p_tx, p_ty, p_tz)); 260 } 261 262 void translate(in Vector3 p_translation) { 263 for (int i = 0; i < 3; i++) { 264 origin[i] += basis[i].dot(p_translation); 265 } 266 } 267 268 Transform3D translated(in Vector3 p_translation) const { 269 Transform3D t = this; 270 t.translate(p_translation); 271 return t; 272 } 273 274 void orthonormalize() { 275 basis.orthonormalize(); 276 } 277 278 Transform3D orthonormalized() const { 279 Transform3D _copy = this; 280 _copy.orthonormalize(); 281 return _copy; 282 } 283 284 void opOpAssign(string op : "*")(in Transform3D p_transform) { 285 origin = xform(p_transform.origin); 286 basis *= p_transform.basis; 287 } 288 289 Transform3D opBinary(string op : "*")(in Transform3D p_transform) const { 290 Transform3D t = this; 291 t *= p_transform; 292 return t; 293 } 294 }